Kurze Betrachtungen aus der Festkörperphysik

Alternierende Kraftkonstanten in linearer Atomkette

Tobias Krähling 04.12.2011

Zusammenfassung

Das Modell einer linearen Kette von Atomen mit alternierenden Kraftkonstanten ist ein einfaches Modell, welches unter anderem in der Festkörperphysik eingesetzt wird. Im Folgenden wird für dieses Problem die Bewegungsgleichung aufgestellt und mit einem Ansatz für die Auslenkung gelöst. Anschließend werden die Frequenzen des optischen und des akustischen Zweiges an zwei Punkten bestimmt und die Lösung graphisch dargestellt.

Sei eine lineare Kette von Atomen mit der Masse m betrachtet. Zwischen den Atomen dieser Kette soll eine Wechselwirkung bestehen, die sich durch zwei alternierende Kraftkonstante c_1 und c_2 beschreiben lässt, wie dies in Abbildung 1 dargestellt ist.

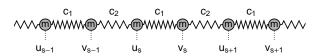


Abbildung 1: Lineare Kette von Atomen mit alternierenden Kraftkonstanten

Unter der Annahme, dass nur Wechselwirkungen zwischen nächsten Nachbarn auftreten, erhält man für die Bewegungsgleichungen

$$m\frac{\mathrm{d}^2 u_s}{\mathrm{d}t^2} = c_1(v_s - u_s) + c_2(v_{s-1} - u_s)$$
$$m\frac{\mathrm{d}^2 v_s}{\mathrm{d}t^2} = c_1(u_s - v_s) + c_2(u_{s+1} - v_s)$$

wobei denjenigen Atomen, die auf ihrer rechten Seite eine 'Feder' mit Kraftkonstante c_1 spüren, mit der Geschwindigkeit u_i und diejenigen, die auf ihrer rechten Seite eine 'Feder' mit Kraftkonstante c_2 spüren, mit der Geschwindigkeit v_i gekennzeichnet sind.

Mit dem Lösungsansatz

$$u_s(t) = u_0 \exp\{i(sqa - \omega t)\}$$

und

$$v_s(t) = v_0 \exp\{i(sqa - \omega t)\}$$

für die Auslenkung erhält man als Bewegungsgleichungen:

$$\begin{split} -m\omega^2 u_0 e^{i(sqa-\omega t)} &= c_1(v_0-u_0)e^{i(sqa-\omega t)} \\ &\quad + c_2(v_0 e^{-iqa}-u_0)e^{i(sqa-\omega t)} \\ -m\omega^2 v_0 e^{i(sqa-\omega t)} &= c_1(u_0-v_0)e^{i(sqa-\omega t)} \\ &\quad + c_2(u_0 e^{iqa}-v_0)e^{i(sqa-\omega t)} \end{split}$$

Kürzen und umstellen liefert das lineare Gleichungssystem

$$c_1(v_0 - u_0) + c_2(v_0e^{-iqa} - u_0) + m\omega^2 u_0 = 0$$

$$c_1(u_0 - v_0) + c_2(u_0e^{iqa} - v_0) + m\omega^2 v_0 = 0$$

welches eine nicht-triviale Lösung besitzt, wenn die Bedingung

$$\begin{vmatrix} (c_1 + c_2) - m\omega^2 & -(c_1 + c_2 e^{-iqa}) \\ -(c_1 + c_2 e^{iqa}) & (c_1 + c_2) - m\omega^2 \end{vmatrix} = 0$$

erfüllt ist. Dies liefert

$$[(c_1 + c_2) - m\omega^2]^2$$

$$= (c_1 + c_2e^{-iqa})(c_1 + c_2e^{iqa})$$

$$= c_1^2 + \underbrace{c_1c_2e^{iqa} + c_1c_2e^{-iqa}}_{=2c_1c_2\cos(qa)} + c_2^2$$

$$= c_1^2 + c_2^2 + 2c_1c_2 - 2c_1c_2 + 2c_1c_2\cos(qa)$$

$$= (c_1 + c_2)^2 - 2c_1c_2\underbrace{(1 - \cos(qa))}_{=2\sin^2(qa/2)}$$

$$= (c_1 + c_2)^2 - 4c_1c_2\sin^2\left(\frac{qa}{2}\right)$$

und da

$$[(c_1 + c_2) - m\omega^2]^2 = [m\omega^2 - (c_1 + c_2)]^2$$

gilt, erhält man als Lösung

$$\omega^{2} = \frac{c_{1} + c_{2}}{m} \pm \frac{1}{m} \sqrt{(c_{1} + c_{2})^{2} - 4c_{1}c_{2}\sin^{2}\left(\frac{qa}{2}\right)}$$

Zunächst sollen nun die Frequenzen des optischen und des akustischen Zweiges bei q=0 bestimmt werden. Hierfür wird $q\to 0$ betrachtet und die Kleinwinkelnhäherung ($\sin(x)\simeq x$ für $x\ll 1$) verwendet. Weiterhin kann die Wurzel über $\sqrt{1-x}\simeq 1-\frac{1}{2}x$ entwickelt werden. Man erhält

$$\sqrt{(c_1 + c_2)^2 - 4c_1c_2\sin^2(qa/2)}$$

$$\simeq (c_1 + c_2) \left[1 - \frac{q^2a^2}{2} \frac{c_1c_2}{(c_1 + c_2)^2} \right]$$

und somit:

$$\omega_{+}^{2} = 2\frac{c_{1} + c_{2}}{m} - \frac{q^{2}a^{2}}{2m} \frac{c_{1}c_{2}}{c_{1} + c_{2}}$$
$$\omega_{-}^{2} = \frac{q^{2}a^{2}}{2m} \frac{c_{1}c_{2}}{c_{1} + c_{2}}$$

Für $q \rightarrow 0$ erhält man insgesamt:

$$\omega_{+} = \sqrt{2 \frac{c_1 + c_2}{m}} > 0$$
 (optischer Zweig)
 $\omega_{-} = \sqrt{\frac{c_1 c_2}{2m(c_1 + c_2)}} aq = 0$ (akustischer Zweig)

Für $q = \pi/a$ ist $\sin^2(qa/2) = 1$. Damit folgt:

$$\omega^2 = \frac{c_1 + c_2}{m} \pm \frac{1}{m} \underbrace{\sqrt{(c_1 + c_2)^2 - 4c_1c_2}}_{=c_1 - c_2}$$
$$= \frac{c_1 + c_2}{m} \pm \frac{c_1 - c_2}{m}$$

und somit

$$\omega_{+} = \sqrt{\frac{2c_{1}}{m}} > 0$$
 (optischer Zweig)
 $\omega_{-} = \sqrt{\frac{2c_{2}}{m}} > 0$ (akustischer Zweig)

Der Verlauf der Frequenz $\omega(q)$ für den optischen und akustischen Zweig ist in der nachfolgenden Abbildung dargestellt.

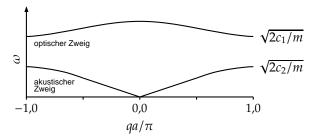


Abbildung 2: Verlauf von $\omega(q)$ für den optischen und akustischen Zweig bei einer linearen Atomkette mit alternierenden Kraftkonstanten. Bei dieser Darstellung wurde $c_1 > c_2$ angenommen.