Normaler Zeeman-Effekt

Der Zeeman-Effekt beschreibt die Aufspaltung von Spektrallinien unter Einwirkung eines äußeren Magnetfeldes auf das emittierende Atom. Die Aufspaltung der Spektrallinien wurde erstmals von dem Physiker Pieter Zeeman 1896 bei der Untersuchung der Spektrallinien von Natrium unter dem Einfluss eines äußeren Magnetfeldes beobachtet. Die Auswirkungen des Effekts sind klein und erfordert für deren Untersuchung Spektralapparate mit sehr hoher Auflösung. Schon kurz nach der Entdeckung konnte Hendrik Antoon Lorentz den Zeeman-Effekt mit der klassischen Elektronentheorie weitgehend erklären, auch wenn erst die Quantenmechanik eine vollständige Beschreibung liefert. Im Folgenden wird die Betrachtung auf den normalen Zeeman-Effekt eingeschränkt, der nur auftritt, wenn sich der Gesamtspin aller Elektronen eines Atoms zu Null addiert. Ein von außen angelegtes Magnetfeld wirkt dann nur noch auf den Bahndrehimpuls der Elektronen.

(mehr …)

WeiterlesenNormaler Zeeman-Effekt

Anregung von Wasserstoffatomen in einen Rydberg-Zustand

Wasserstoffatome lassen sich durch Strahlungsabsorption von Laserlicht in hoch angeregte Zustände (sog. Rydberg-Zustände mit n » 1) versetzen. Die erforderlichen Wellenlängen liegen jedoch im tiefen UV und Strahlung mit ausreichender Intensität lässt sich nur sehr schwierig erzeugen. Mann kann diesen Prozess jedoch in zwei Stufen ablaufen lassen:

(mehr …)

WeiterlesenAnregung von Wasserstoffatomen in einen Rydberg-Zustand

Wasserstoffatome im Magnetfeld: Zeeman- oder Paschen-Back-Effekt?

Befinden sich Wasserstoffatome in einem Magnetfeld, so spalten die Emissionslinien aufgrund des Zeeman-Effekts oder Paschen-Back-Effekts auf. Im Folgenden soll untersucht werden, ob die Aufspaltung der $H_\alpha$-Linie ($n = 2 \leftarrow n = 3$) bei Wasserstoffatomen, die sich in einem Magnetfeld von B = 4,734 T durch den anormalen Zeeman-Effekt oder Paschen-Back-Effekt verursacht wird.
(mehr …)

WeiterlesenWasserstoffatome im Magnetfeld: Zeeman- oder Paschen-Back-Effekt?

Grundzustand im Wasserstoffatom: Energieeigenwert und Wahrscheinlichkeit

In dieser kurzen Betrachtung soll der Energieeigenwert aus der Schrödingergleichung des Grundzustandes des Wasserstoffatoms (1s-Zustand) ermittelt werden. Weiterhin wird die Wahrscheinlichkeit bestimmt, das Elektron innerhalb einer Kugel mit Radius ρ um den Kern zu finden.

(mehr …)

WeiterlesenGrundzustand im Wasserstoffatom: Energieeigenwert und Wahrscheinlichkeit