Brechung im Glaswürfel

Ein Würfel aus Glas mit einem Brechungsindex von n2 = 1,5 und einer Kantenlänge von a = 6 cm hat in seiner Mitte eine kleine Fliege eingeschlossen (der Würfel befindet sich in Luft mit n1 = 1). Angenommen sei, dass es sich um ein punktförmiges Gebilde handelt. Nachfolgend soll die Frage betrachtet werden, welche Teile einer Würfelfläche bedeckt werden müssen, damit die Fliege von keiner Richtung aus mehr gesehen werden kann.

(mehr …)

WeiterlesenBrechung im Glaswürfel

Beispiel zur Fata Morgana

In der folgenden Betrachtung soll das folgende Beispiel zur Fata Morgana berechnet werden. Der Brechungsindex in Luft möge senkrecht nach oben um 0,01 % pro Meter kontinuierlich abnehmen. In welcher Höhe wird ein Lichtstrahl total reflektiert (Winkel mit der Horizontalen = 0), wenn er ursprünglich einen Winkel von 45° mit der Horizontalen bildet? Die Erdkrümmung soll dabei nicht berücksichtigt werden.

(mehr …)

WeiterlesenBeispiel zur Fata Morgana

Normaler Zeeman-Effekt

Der Zeeman-Effekt beschreibt die Aufspaltung von Spektrallinien unter Einwirkung eines äußeren Magnetfeldes auf das emittierende Atom. Die Aufspaltung der Spektrallinien wurde erstmals von dem Physiker Pieter Zeeman 1896 bei der Untersuchung der Spektrallinien von Natrium unter dem Einfluss eines äußeren Magnetfeldes beobachtet. Die Auswirkungen des Effekts sind klein und erfordert für deren Untersuchung Spektralapparate mit sehr hoher Auflösung. Schon kurz nach der Entdeckung konnte Hendrik Antoon Lorentz den Zeeman-Effekt mit der klassischen Elektronentheorie weitgehend erklären, auch wenn erst die Quantenmechanik eine vollständige Beschreibung liefert. Im Folgenden wird die Betrachtung auf den normalen Zeeman-Effekt eingeschränkt, der nur auftritt, wenn sich der Gesamtspin aller Elektronen eines Atoms zu Null addiert. Ein von außen angelegtes Magnetfeld wirkt dann nur noch auf den Bahndrehimpuls der Elektronen.

(mehr …)

WeiterlesenNormaler Zeeman-Effekt

Beispiel zum Stefan-Boltzmann-Strahlungsgesetz: Temperatur der Erde

Die Sonne sei ein perfekter schwarzer Strahler mit dem Radius rS = 6,95 · 108 m, der Oberflächentemperatur von TS = 5800 K und dem mittleren Abstand Sonne-Erde von dS-E = 1,496·1011 m. Berechnet werden sollen im folgenden

  • die mittlere Leistungsdichte (in W/m2) der Sonnenstrahlung im Abstand dS-E von der Sonne sowie
  • die Temperatur der Erde unter der Annahme, die Erde wäre ein perfekter schwarzer Körper und würde nur durch die Sonne geheizt.
(mehr …)

WeiterlesenBeispiel zum Stefan-Boltzmann-Strahlungsgesetz: Temperatur der Erde